CalciLiq 16 neutro, crecimiento y calidad para los cultivos más exigentes

CalciLiq 16 neutro es una solución técnica concentrada de nitrato de calcio que aporta conjuntamente dos nutrientes fundamentales. El nitrógeno y el calcio son indispensables como factores de crecimiento, producción y calidad, pero es la forma de nitrato de calcio la más eficiente para cubrir las necesidades de cultivos de alta producción y exigencias de calidad. Está especialmente indicado para su utilización mediante fertirrigación en hortícolas, cítricos, berries, tomate de industria, frutales, etc.

Ventajas del CalciLiq 16 neutro frente a otras soluciones de nitrato cálcico

- 91 Su pH neutro se adapta a todos los sistemas de riego y tipos de agua.
- 92 Su bajo contenido en amonio. Si el nivel de nitrógeno amoniacal es alto puede competir con el mismo calcio en la absorción por la raíz.
- OB CalciLiq 16 neutro tiene un contenido mínimo en amonio.
- 04 Idóneo para suelos neutros o ligeramente ácidos.
- 95 Perfectamente utilizable mediante aplicación foliar de alta eficiencia.
- **Previene cambios bruscos de pH en aguas con bajo contenido en bicarbonatos**. Estos cambios pueden alterar las características del bulbo mojado y afectar a las raíces activas.

mayor compatibilidad Gracias a su formulación con pH neutro, no se altera el pH del agua de riego

mejor nutrición Su alta concentración en calcio, da respuesta a las necesidades de los cultivos más exigentes

mayor actividad
Su gran capacidad para
desplazar el sodio del agua
y del suelo, impide posibles
toxicidades en la raíz

mayor eficiencia El bajo contenido en nitrogeno amoniacal de su composición, evita competencias con el calcio

abono nitrogenado CalciLiq 16 neutro solución de nitrato cálcico 8,2 (16)

Composición y aplicación del producto

Especificaciones técnicas	
Nitrógeno total (N)	8,2%
Nitrógeno nítrico (N)	8,0%
Nitrógeno amoniacal (N)	0,2%
Óxido de calcio soluble en agua	16,0%

Otras características	
pH (en solución al 10%)	5 - 6
Densidad	1,45 kg/dm³
Temperatura de cristalización aprox.	-13°C
Concentración de Ca(NO ₃) ₂	47,0%

Fertirrigación		
General Riego	1 - 4 l/m³	Durante todo el ciclo
Fresa / Berries	300 - 1.000 l/ha	Todo el ciclo de cultivo
Cítricos / Frutales	300 - 1.000 l/ha	Mayores necesidades en suelos ácidos y aguas bajas en bicarbonatos
Tomate de Industria / Hortícolas	200 - 600 l/ha	Todo el ciclo de cultivo
Invernaderos	300 - 900 l/ha	Todo el ciclo de cultivo. Mayores necesidades en fructificación

Foliar			
General	2 - 5 l/m ³	1-6 tratamientos	

La importancia del calcio

El aporte de calcio como nutriente es necesario durante todo el ciclo de cultivo por sus especiales características:

- Competencia con otros nutrientes presentes en el suelo, agua o los propios fertilizantes (sodio, amonio).
- Poca movilidad en la planta. El calcio se acumula en distintas partes de la planta durante el crecimiento, pero no emigra a zonas más jóvenes ni a frutos.
- Altas necesidades en momentos críticos como las fases de crecimiento rápido y fructificación. Su presencia en savia es necesaria independientemente de si hay mucho calcio en el suelo, porque no siempre está disponible.

¿Por qué se utiliza nitrato de calcio en fertirrigación?

- Aporte de calcio como nutriente, adaptado a la curva de necesidades del cultivo.
- En terrenos o aguas salinas, el calcio es el elemento que con mayor eficiencia desplaza al sodio, eliminando posibles toxicidades a la raíz.
- Aporte de nitrógeno de absorción inmediata.

